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Phase transitions in open quantum systems, which are associated with the formation of collective states of a
large width and of trapped states with rather small widths, are related to exceptional points of the Hamiltonian.
Exceptional points are the singularities of the spectrum and eigenfunctions, when they are considered as
functions of a coupling parameter. In the present paper this parameter is the coupling strength to the con-
tinuum. It is shown that the positions of the exceptional poititsir accumulation point in the thermodynami-
cal limit) depend on the particular type and energy dependence of the coupling to the continuum in the same
way as the transition point of the corresponding phase transfigi063-651X98)07509-6

PACS numbefs): 64.60—i, 05.70.Fh, 03.80:r, 02.30.Dk

[. INTRODUCTION ternal collectivity is described by a purely imaginary cou-
pling strength. The particular type of collectivity is therefore
Recently, mechanisms of restructuring of quantum sysexpressed by a real spectrum in the first case, whereas in the
tems have been discussed with renewed int¢fes?]. Con-  second case the dissipative character of the open system is
ditions for the formation of collective states on the one hande€flected by imaginary parts of the eigenenergies, the physi-
and of quantum chaos on the other are being studied. Amorgg! Widths. Formally, the formation Qf a collective state is,_
the oldest examples of the former is the schematic moddlowever, the same in both cases. It is expressed by the mix-
explaining in simple terms the origin of giant dipole reso- N9 of th_e e|genfu_nct|ons of the full Hamiltonian with respect
nances in nucle[8]. The Hamiltonian is of the formH O the eigenfunctions off,. _ _
=Ho+H;=H,+DD" whereH, is the Hamiltonian of the The case rankdo) =rank(H,) is no't hecessarily con-
unperturbed system andD' describes the factorized n(_acted V.V'th the appearance of collectlve_ states. It has been
. . . . . ; widely discussed in the literatuf®]. Conditions have been
dipole-dipole residual interaction. The rankte§ is N where

N is the number of unperturbed states considered in a certa iven for the occurrence of chaotic behavior and of some sort
energy interval, while the rank @D is 1. If the modulus phase transitiongl0]. The mechanism of such restructur-

of the average matrix elements of the vediois sufficientl ing and possible chaotic behavior in the transitional region
9 y (A~A.) have been explained in terms of the exceptional

large O>d,, whereD is the average matrix element Df points (EP9 of the problemHy+ AH; .

andd, is the mean level distance of the eigenvaluesigy, The EPs are the only singularities in the compleplane
one of the eigenstates bf is shifted considerably in energy. f the eigenvalue€,(A). Their positions are fixed by the
Since its eigenvector has contributions from almost all basigpgice ofH, andH; only. As a consequence, the distribution
states, it is a collective state. This type of collectivity is of the EPs is characteristic for any particular Hamiltonian of
calledinternal collectivity [4]. the formHy+ AH,, onceH, andH, are given.

Besides the internal collectivity, there exists the so-called | is therefore natural to discuss the EPs as they determine
external collectivity of resonance stafé$. It appears at high  jmportant properties of the spectrum such as the statistical
level density since the discrete states are in general embefioperties, the type and locations of avoided level crossings,
ded in the continuum and coupled to each other via the conne sofiness of the spectrum, and the ranges ofalues,
tinuum. The Hamiltonian of the open unantum syitem IS, WQuhere special features of the spectrum occur. In particular,
a good approximation, given Mo —iVV' whereVV' con-  he distribution and frequency of the EPs give indications
tains the coupling matrix elements’ between the discrete apoyt transitional regions and possible occurrence of chaotic
states] and the decay channets The rank ofVV' is equal  pehavior.
to the numbeK of open decay channels. It is usually much  The studies of the EPs have, in the papers quoted, been
smaller than the rank of Hy. If the matrix elements 0¢V"  dealing with closed systems, where the influence of decay
are sufficiently large ¥>d;), K collective states are channels inthe continuum has not been considered, that is,
formed. They are distinguished from thBl—K non- is self-adjoint and the eigenstates are discrete. As stated
collective states by their large widths or short lifetinjds-  above, we are often faced with dissipative systems, where
7]. The wave functions of thed€ collective resonance states the coupling to the continuum and decay channels is ex-
are again characterized by a large number of components piessed by complex eigenenergies which give rise to finite
the basis states. lifetimes of resonance states. The complex eigenvajes

There is a basic difference between internal and externat E,— /2", are interpreted as resonance states at the ener-
collectivity. Internal collectivity deals with a self-adjoint gieskE, with the decay width$’, which are inverse lifetimes.
Hamiltonian, where the coupling parameter is real, while ex- While there is a great mathematical similarity in the treat-
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ment of the respective self-adjoint and dissipative Hamilto-of eigenvalues. They are fixed by a particular choiceHgf
nians, the physical findings deserve particular attention. OandH, . If we exclude a genuine degeneracy of eigenvalues
special interest will be the circumstances under which théor real valuesA, such coalescence will happen only for
formation of collective states can be understood as a phasmplex values of the coupling parameter and hence for
transition. We generalize the results obtaine{ilid] to open  complex eigenvalues. Accordingly, the EPs are determined

quantum mechanical systems and expand the investigation§ the simultaneous solutions of E@) and of
of [7] by taking into account the effects and properties of the

EPs. In all cases, we will restrict ourselves to the one- d
channel case in which the phase transition as well as the —dei{Hy+AH;—E)=0, 2
collectivity of one of the states are well pronounced. dE

Generally, a phase transition is a substantial restructuring _ _
of the system taking place at a finiteritical) value A, of a where the second equation ensures that two eigenvalues co-

certain control paramete¥. This restructuring is a collective INCide. Equations1) and(2) are polynomials irE andA of
phenomenon, ranging over all scales inherent in the syster@rderN andN—1, respectively. They can be combined into
The nature of the reorganization process is characterized [y Single polynomial i\ of orderN(N—1), the resultant of
the behavior of an order parameter being a function ofn q. (1), by eliminating the variabl&. The resultant has real
our case of an open quantum system the order parameter §gefficients, hence the EPs occur M(N—1)/2 complex
T'o/N whereT, is the width of the collective modén the ~ Conjugate pairs. They are the only singularities which the
one-channel cas@ndN is the total number of stat¢g]. Its ~ €igenvalued,(A) can have as functions df. In fact, they
first derivative with respect ta. shows a finite discontinuity 2r€ the square root branch points of one analytic function
at the critical valueA, corresponding to a second-order Which hasN Riemann sheets, where the values on each sheet
phase transition. All characteristic features of the phase trar2'® just the real eigenvalugg(A) for real valuesA. All N
sition emerge already at finite values Nfdespite the fact €igenvalues are therefore analytically connected with each
that the strict thermodynamical definition is possible only for0ther via the square root branch points in the complex
N—co. Precise conditions for its occurrence are derived inPlane. _ . _ _
[7]. The behavior of the glgenfuncthns when contlnqed to the
The phase transition is connected with the appearance of'aPS deserves special interest. Since they are lying in the
state whose external collectivity is of a global nature. [tsCOMPIeXA plane, the operatdr,+AH, is no longer self-
wave function carries contributions froall eigenstates of adjoint at A=Agp with Agp denoting a(compley EP.
Ho. This global collectivity must be distinguished from the Therefore we cannot expect two linearly independent eigen-
local (external collectivity which appears when the reso- Vectors even though twecompley eigenvaluesE; and Ey
nance states are coupled strongly to the continuum but tHePalesce. The eigenbasis B+ AggH, is no longer or-
conditions for a phase transition are not fulfilled. The wavethogonal as is the case for self-adjoint Hamiltonians. In fact
function of this collective state carries contributions onlyin contrast to the self-adjoint case, where a twofold degen-
from a restricted number of basis states, whose unperturbedjacy always implies a two-dimensional eigenspace, an EP is

energies are overlapped by the width of the collective statéharacterized by the fact, that the rank of the associated ma-
[7]. trix Ho+ AgpH4 drops by one. In other words, there is no

In Sec. Il the basics of the EPs and specific features rewo-dimensional subspace associated with the coalescence of

lating to open quantum systems are reviewed. A simple extWo e_igenvalues. We rather encounter a confluence of the
ample using two resonances coupled to one decay chann@f©0 eigenvectorsy(A) and ¢y(A) at A=Agp. Moreover,
illustrates the connection between the main results knowfor @ general complex valug not coinciding with an EP, we
from the study of open quantum mechanical systg8asind ~ May choose a biorthogonal system such that

the aspect of the EPs. In Sec. lll the restructuring of the _

system is put into context with several systems of a different (G (M) | A))y= 6y, (3
nature. As a beginning, the simplest case of a picket-fence

model is considered. Characteristic patterns of the EPs relajyheres;(A) and ¢;(A) are the left and the right eigenvec-
ing to phase transitions are established. Next, the influence gérs, respectively. We note that the transformat@mliago-
random perturbations within the system is investigated. Finalizing a symmetric complex Hamiltonia is complex
nally we discuss the effect of a more general level densitythogonal OO"=0TO=1) but not unitary. Therefore the
distribution of the unperturbed levels and that of the couplingscalar product of the two left or right eigenvectors obeys

vectorV. A short summary and outlook is given in Sec. IV. @k(/\)Wk(A»:Wk(AHl//k(/\)>>1 for anyk. A problem
occurs when the normalization condition given by E3).is
considered forA—Agp: with E|(Agp)=E\(Agp it is
Ui(Aep) =t (Agp). This means, in view of Eq(3), that
The NX N matrix problem of the forrHy+ AH; has ei- ¢ (Agp cannot be normalized at = Agp, since now the
genvalueskE(A), k=1,... N which are obtained by the orthogonality conflicts with the normalization requirement.
secular equation Usually, Eq.(3) is globally enforced; as a consequence, the
two statesy(A) and ¢, (A) not only coincide forA — Agp
de(Ho+AH,—E)=0. @ put they blow up, that is lim . »_(v(A)[a(A))—= [3].

We here assume thiek, andH; are real and symmetric. The  The physical significance of the EPs lies in their relation
EPs[9] are characterized by the coalescence of any two pairt avoided level crossing. In particular, in a number of ex-

Il. EXCEPTIONAL POINTS AND FEATURES
OF OPEN QUANTUM SYSTEMS
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amples it has been demonstrated that in the region of the retdurs of the trajectories depend therefore on both the phase
values ofA, where a high density of EPs occurs, the typicaland the relative coupling controlled hy. For w=45° and
statistical characteristics of the spectrum ascribed to quantu= p-,=0° the two trajectories will cross one EP At
chaos prevai[9,11]. =\gp=€,—€;. At this critical value of the coupling
Turning to open quantum systems strength the two eigenvalues coalesce. The dimension of the
eigenspace of the Hamiltonian is reduced to one including
the consequences for the eigenvectors mentioned above. We
stress, however, that the crossing of trajectories should not
be confused with the familiar degeneracy for self-adjoint

we are faced with a Hamiltonian which has in general comHamiltonians.
plex eigenvalues&=E,—i/2I', as the dimensionless  FOr ¢# ¢gp the two trajectories repel each other within a
strength parametek is complex, certain finite distance in the complex plari@]. This is a
generalization of avoided level crossing for real eigenvalues
. of a Hermitian Hamilton operator. Only i& is properly
A=\e'?. (5  tuned to the value ob can the two energy trajectories genu-
inely cross each other. A nice illustration of this simple ex-
ample for different values ob and ¢ can be found irj6].
What becomes obvious in thex2 matrix model can be

H=Ho—iAVV' (4

[The factori in front of the coupling termA in Eq. (4) is
used traditionally in this conte}tThe question then arises, generalized to an arbitraidx N situation, i.e.N resonance

Whethgr and u_nder which conditions tdar morg eigenval- states coupled to one common decay channel. With increas-
ues coincide in the complex energy plane and how such a

crossing depends on the coupling strengthThe answer to INg A one eigenvalue trajectory always drifts further into the

these questions depends on the manner by which the EPs a%mplex p!ane, while the others are b_endmg back_towards
fixed by the operatorsl, and\V. the real axis after they have repelled with the collective state

For illustration let us consider the simple example of tWowhose width always increases. This happens irrespective of
resonances, which are coupled to one open decay channé: Physically it means that one of the resonance states takes
The Hamiltonian matrix for this system can be written in the@lmost all of the transition strength by trapping the others

eigenbasis oH, as which then become long-livel8,6].
This is understood by the rank one of the coupling matrix.
e 0\ cofw COSw Sin w At large values of the first partH, of the Hamiltonian is a
H:( 0 e - (COSw sin o sirfo ) small perturbation. Therefore the total matrix is essentially

turned into an operator of rank 1. In other words, there is
=Ho—iA VVI, (6)  only one nonzero eigenvalue, and the widths of the zero
eigenvalues have to vanish. In general, wiNhresonance
where we useH;=VV'. The relative coupling strength of states and<<N open decay channels, there appkafast
the two resonance states to the continuum is determined t&’ecaying states anh— K states which are virtually stable.
the anglew of the vectorV = (cosw,sinw). The simplicity of  various examples of the many-channel-many-resonance
the model provides an analytic expression for the two EPsgase can be found ifL—7].
viZ., The low rank ofH; has a drastic effect on the total num-
. i ber of EPs. IfK is the rank ofH,, the number of EPs is
Aep=i(e2—€)e7", @) K(2N—K—1). The important point is the linear behavior in

which are the zeros of the square root in the expression o only whenK attains the order of magnitude bfis the

: . . quadratic behavior retrieved. This finding is significant in
the eigenenergies, which read that it indicates that chaotic behavior cannotgemeratedy
€1+ €—iA a low rank ofH,, there is simply an insufficient number of
51,2=T avoided level crossings. This is in line with an analysis of the

level statistics of a Poisson ensemble coupled to a continuum
1 by a Gaussian coupling vectf?,5], where, for large cou-
ii\/(€1—62)2—2i/\(61—62) cos o+ (iA)%. pling strength, chaotic features of the system are the more
pronounced the larger the numberof decay channels.
8

The example nicely demonstrates that the EPs depehd
on Hy andH; . Under variation of the angle the EPs are
moving on a circle with radiug,—€; in the complexA We turn our attention to the critical region, where a re-
plane. What determines the EPs are the energies of the ustructuring of the system occurs. We address the relationship
perturbed state@hat is,H,) and their relative couplingghat  between the potential occurrence of a phase transition which
is, H;), andnot the phasep of the couplingA =\e'¢. is associated with the formation of a globally collective state,

Yet, the complex eigenvalug , obviouslydo depend on  and the distribution of the EPs. Since the essential properties
A, that is, on its modulus and on the angle. Variation of  of the Hamiltonian must be reflected in the distribution of the
\ invokes trajectories in the complex energy plane. The conEPs, we expect this relationship to exist.

lIl. RESULTS
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A. Simple example: Picket-fence model [ T T ' ' '
We consider the simple model with -

S 'f T T

2 T ]

\ ]

N—3 i 3
0 2 .. 0 ! | |

Ho= O S N I -
N—1
0 0o — .
2 ‘ : ‘
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E

and theN X N matrix of rank one
FIG. 1. The trajectories of the eigenvalues fér~=15 andN

-1 =43 for increasing\ €[0.001,7 in steps of 0.001. The crossing
vVi= : : (10) points are marked by diamond$l€ 15) and crossedl=43). E
1 ... 1 ' andI" are given in units of the distance of the unperturbed energies

€, of the picket fence.

The Hamiltonian describes a picket-fence spectrum, wher@ile for A 7> 1

all states are coupled equally to one decay channel. Such a

system shows a phase transitionAat 1/7 [7]. Results for i

finite N can be obtained easily by numerical means. In the &=k+ =+ =—In

limit N— the zeros of detfly—i AVV'—&) and sing) 2 2m

—iA cos @€) coincide[7]. One finds an accumulation point

of the EPs, which emerges in the limit and is found from the . . -

zeros of the resultant, which is obtained by eliminating theWIth K integer. In t.)Oth cases, the remaining terms, denoted

variable£ from the set by O, are purely imaginary ifp=0°. These results were
obtained in[7].

1-Ax
1+Am

=k ! | O(A 2
+§ T+ ( ),
(16

sin (w&)+imA cos(w€)=0, (11) For finite N the resultant relating to the Hamiltoniath,
—iAVV' becomes a polynomial of ord&—1 in A2. The
cos(m&)—imA sin(w&)=0. (12 complex roots which are the EPs are therefore not only sym-

) _ ) metric with respect to the real axis but a solutidbps implies
These two equations are equivalent to Ed$and(2). Their  ajso the solution- Agp. As a consequence, a solution has to
simultaneous Solut|0ns, the zeros of the resul@dﬂhoted by occur on the realA axis for N even. This is a nongeneric

Rs)), are given by feature of the present model. For odd valuesNofand ¢
— =0°, no eigenvalue is crossing an EP under variation .of
— 2 L
RsiA) = vi+(imA)~ 13 We use such cases in our numerical demonstrations.

To illustrate how thef undergo level repulsions and how

Obviously, this is no longer a polynomial. The important ; )
the repulsions are related to the crossing pofiftsgp), we

point of our finding is thaall roots which occur in the com- "/ g _ . .
plex A plane for finiteN converge toA =\ = = 1/ in the display in Fig. 1 the crossing points and the eigenvalue tra-

limit N—o. Negative values ok would lead to negative 1€ctories for different values oN and ¢=0°. Since the

decay widths which have no physical meaning. In the fol-SPECtrUM is symmetric with respect to positive and negative
lowing, we restrict ourselves to positive and 0= energies, only the positive part near to the center is drawn.
<90°, since all relations are symmetric with respect to the 0" A =0 all trajectories begin at the unperturbed energies

replacements — — A andA—A* . Note also that the limit €«; MOVe into the complex plane and then turn bae (

point, being a point of accumulation, is no longer a square¢ 0) towards the real axis again. For lafgehe correspond-

root branch point for the energy spectrum but rather a logal’d values are given by Eq16) (which is valid for N

rithmic branch point. In fact, the analytic behavior of the — ). With increasingN the imaginary parts of the turning
(infinitely many energy levelsS,(A) in the vicinity of A and the crossing points increase, while they move nearer to

=1/ is found by solving the secular equation explicitly for €ach other. The trajectory of the collective staig<0) is
£. The expression reads moving on the imaginary axis towards larger imaginary val-

ues implying an increasing width. We interpret the turning
1 i 1—-Am points as level repulsions of the collective state with the
&(A)= —arctan(—iAm) =5—Ing———, (14 other levels. The descending slope of the envelope of the
turning points and the crossing points is due to the finite size

which clearly reveals the logarithmic branch points/at ©f the spectrum. _
= 1/7. Moreover, forn7<1 we read off In Fig. 2 we display the EPs in th& plane for a few
values ofN. The sets of the EPs belonging to the saxnare

E=k—iA+0O(A?) (15 connected by a solid line. The zooming in of the EPs towards
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3.5 T T T T T T T T T
[aa]

25 : K 1

0.1 0.15 0.2 0.25 0.3 0.35 0 02 04 06 08 1 12 14 16 18 2
Re (A) I/m 2In A

FIG. 2. The exceptional points in the complaxplane forN  FIG. 3. B as a function of for different systems withp=0:
=15 (rhombs, N=19 (plus sign$, N=27 (crossey and N=43 ideal picket fence witiN=101 (dotted ling, randomly perturbed

(triangles. The inset is a magnification around the accumulationPicket fence withN=101, 1001(solid lines, compensated case

point A ; (black square The arrows indicate the changes of the EPsWith r=1, t=4, andN=101, 1001(dashed lines undercompen-
with increasingN. sated case with=0, t=4, andN=101 (thick line). The two val-

ues\.=1/m and 2fr, referring toN—«, are indicated by a verti-

the accumulation poink .= 1/ for increasingN is clearly ~ cal solid line.

discernible and enhanced in the inset of Fig. 2. The lakger . o )
the larger is the density of the EPs near to the real axis/alues. The accumulation point is then relatively far away on

Additional points come in further away with each additional the imaginary axis of the coupling strength. Results for a
step ofN. They are typical edge effects and correspond to/ariety of anglespy but the sameH, andH, have been in-
the turning points of the energy trajectories at the outer edgeestigated ir(7]. o

of the spectrum. These points which emerge further away Previously, a criterion for a phase transition, viz.,

from the real axis quickly move in to get near to the others N
while new further points come up for the following steps of _ 2 1
N. Eventually, in the limitN—oe, all points coalesce at the T 2N+ 1N (d o) (17)

accumulation point.
In this way, variation of the coupling strength invokes a5 peen introduced [i7]. Excluding the nongeneric case of
a certain trajectory of the system in the complexplane. If 5 accidental crossing of twor more eigenvalues at an EP,
it hits the accumulation poink (or the high-density regions g s an indicator of the sharpness of the transition. On the
of EPs at finiteN), all complex eigenvalues coales@early  gne hand, it is the larger the smaller the distance between the
coalescgat their crossing point. This leads to a sharp tran-complex eigenvalues and their crossing points. This distance
sition from a regime withN resonance states to a regime jg determined by the angle. On the other hand3>1 only
with one collective state andl—1 trapped states. if all complex eigenvalues reach their minimum distance si-
We note that at the accumulation poit=A., which  yyitaneously at the same valle=A., i.e., if the EPs ac-
can occur only in the limiN—co, all infinitely many eigen-  cymulate. In this cas® shows a pronounced maximum as a
states collapse into one. It is the global collective state. It,nction of A aroundA =A..
retains its characteristics also far> )\_C, wh_en the other In Fig. 3 a few cases including the picket-fence model are
stateqthe trapped statgse-emerge. This particular case un- jjjystrated. It also demonstrates a situation where a local col-
derlines the crucial connection between the critical point of §gctive state is formed, which means that the phase transition

phase transition and the EPs. _ _ is washed out completely. We return to this latter aspect at
In the picket-fence model the accumulation patlies  the end of Sec. Il C.
on the real axis. If for physical reasons, a vali¢ 0 has to To summarize the findings of this subsection: the high

be chosen wittH, andH, left unchanged, a variation of  gensity of EPs provides the mathematical mechanism for the
will effect a trajectory in the complex plane that passes the restructuring of the system under variation of the modalus
high-density regiortor accumulation point for infinitd) at  of the coupling parameteA towards larger values. The
a certain distance. This affects the sharpness of the transitigfharpness of the transition which is evoked by the variation
between the two regimes. Note that this type of softening ofs getermined by the distance at which the high-density re-
the phase transition is different in nature from the one causegion (accumulation point for infinité) of EPs is passed by
by a finite value ofN. It persists in the limitN—c. This  the corresponding energy trajectories. This distance is deter-
underlines thatp as well as the distribution of the EPs de- mined by the anglep.
termine whether there is a phase transition in the strict ther-
modynamical sense, which is associated with the sudden for-
mation of a globally collective state in the system.

As an aside we realize that the schematic model (  The essential aspects of our findings remain unchanged if
=90°) cannot have any signatures of a sharp phase trandlhe unperturbed energies k, and/or the elements of the
tion, when the real value of is varied from zero to large coupling matrixV deviate from the symmetrical form used in

B. Random change of the unperturbed spectrum
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~ 022 ' ' ' phase transition occurs at finite coupling strength, if and only
1 if the energy dependence of the coupling vector is given by
1 the inverse functiop(E) ~ L. If the system obeys this condi-
1 tion on the average, a phase transition still occurs. The criti-
1 cal point may be shifted with respect to the value of the ideal
. picket-fence model. We talk about “overcompensation”
. when the energy dependence of the coupling vector de-
4 creasegincreasep at a lessei(fastey rate than that of the
i inverse behavior of the level density. In this case, numerical
_ results[7] led to the conjecture that the critical point is
4 shifted to zero, i.e.\.—0 if N—c. In the opposite case,
. . L which we denote as “undercompensation,” a global collec-
815 02 0.25 03 Re (A) 035 tive mode and a global reorganization of the spectrum as a
whole is absent. Now one obtaikg— o if N—o. The oc-
FIG. 4. The EPs foN=19 for the ideal picket fenc&hombs currence of the broad mode remains then a local phenom-
and the randomly perturbed picket fer(gdus signs. A is denoted ~ enon for all finite values ok [7]. A collapse of the Hilbert
by a black square. space as in the picket-fence model does not occur.
The following substantiates the conjecture about the posi-
the preceding section. We address the question of Whetht'E:"Pn of A in the undercompensated and overcompensated

and to what extent such disturbance can change the bascases. To facilitate the discussion we restrict ourselves to a

paten, et i, e formaton of afeion of g Gty o ! 7€ 110 Cependence of e couping
EPs or even of an accumulation point in the lahy@mit. matrix elementsv,|? is assumed to be of the forfk|". The

For this purpose, we define random perturbationsiin unperturbed energig@igenvalues oHg) are defined ag,
by (Ho)ik= —(N—=1=2K)/2+r\ where ther are random =sgn()|k|"2. The secular equation E€L) can be written as
numbers from a uniform distribution in the interval

[—0.1,0.7. In Fig. 4 we have drawn the EPs for the per- N/2 o2 i

turbed and unperturbed picket fence in the compleglane > =—. (18
for N=19. As in Fig. 2, the unperturbed EPs are connected ke e A

by a solid line. The perturbed EPs no longer lie on the
smooth curve but are scattered around it.

Using Eq.(18), we obtain

The quantityB of Eq. (17) indicates the accumulative N/2 0,2
behavior of the EPs. It is illustrated in Fig. 3 for the dis- LL—— (19
turbed picket-fence model as a function)ofor two differ- k=—NI2 (E— €)?

ent values oN usinge=0°. The excess beyond unity Bf

around\ =1/ increases with increasiny. We interpret ~Which corresponds to Eq2).

this result as a strong indication for the disturbances to be The EPs are simultaneous solutions of H38) and(19).

washed out, the more so the largér In other words, for an It is obvious from Eq(19) that the energy values at the EP

increasing number of states, the average distribution of theannot be real. In fact, it is know7], and also discussed in

EPs is zooming in to\;=\.=1/7. Hence, the EPs of the connection with Fig. 1, that, fot=2 andr=0 (picket

irregular system accumulate on the average. fence, the imaginary parts of the energies at the EP tend to
Furthermore, the precise form of the distribution from |nf|n|ty for N—oo. Numerical evidence as well as the follow-

which the random changes id, and/orH, are drawn is Ing consideration support the conjecture that this holds for

immaterial. In particular, choosing the eigenvaluesHyf  arbitrary values of andt as long ag—r>1. For this pur-

from a Wigner[Gaussian orthogonal ensemi@OE)] or a  Pose we rewrite E(18) for evenN,

Poissonian distribution does not alter our conclusions. The

N/2 .
existence and the position of the accumulation point remain 26> N _' 20
unaffected. PN (20

C. Level density dependence In the largeN limit we replace the sum in Eq20) by an

In real physical systems, the level density, the numberi,ntegral ande by iz and obtain

and the coupling strength of the decay channels are in gen- ; .
eral energy dependent. The former is usually a monotoni-_ ,; jw kdk _ —2iz Eol11— 1:2_ 1:._22
cally increasing function, whereas, for instance, in nuclear 1 22+kt t—-r—1 21 = t t
physics the continuum coupling strength decreases. This en- )
ergy dependence will influence the distribution of the EPs. |
- : ; =—, (21

In [7] it has been shown that it needs a proper tuning A
between the density dependence on the one hand and the
coupling dependence on the other in order to guarantee Bhe derivative with respect to of the right hand side of Eq.
phase transition at a finite value of the coupling strength(21), which is a linear combination of two hypergeometric

Given the energy dependence of the level dens{i¥), a  functions, corresponds to the larde limit of Eq. (19 (&
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—iz). It is straightforward to show, for instance, by graphi- components of the wave functions blow {p) when an EP
cal means, that this derivative has no zero for finite values ois surrounded in the\ plane (which amounts to&;—¢&,

z. In fact, the derivative vanishes only far irrespective
of r andt (t>r+1). We exploit this fact in Eq(18) in that

—&,— &), the tad is changed into 1/t&m®, which corre-
sponds to the chang®— 6+ 7/2. This impliesy,— ¢, and

we consider the limit of the left hand side for large imaginary ¢,— — ¢ .

values of E=E—iI'/2. It is found to be proportional to

While it may not be obvious to implement such a contour

20y This yields the generalized result that the over-in the complexA plane in an actual physical experiment,

compensated case occurs for 2(d)>t, and the compen-
sated and undercompensated cases fort2(t and 2(1

+r)<t, respectively{7]. In fact, the respective limit of the
left hand side of Eq(21) is infinity, a finite constant, and
zero forl'— . Consequently, the corresponding values of

there could be a possibility to achieve the same effect by a
variation of the modulus ofA for different values of the
relative coupling given byw. In fact, using the settingf,
—iAVV', then the EP lies fow=45° just below and for
w=45° just above the point=e,—¢€,. If we compare the

must be zero, finite, and infinity, respectively. Since thesdwo situations while varying., the two wave functions for

values constitute simultaneous solutions of E@s) and

\>e€,— €, differ in the same way as if the EP had been

(19), they are the values where the EPs accumulate. Furthesurrounded.
more it follows that the accumulation point is on the real axis This can be made explicit by choosing an expression for

for the compensated cae=2(1+r)].
To demonstrate further this result, the valuesBofs a

function of A=\ (¢=0) are drawn for the compensated
caser =1, t=4 in Fig. 3. One clearly sees that the maximum

of B around\ =2/7r increases wittN. As explained above,

tand which is more convenient for this purpose, viz.,

—iAsSin2w
51_52+ €1 Ez_i)\ COS v ’

tand= (29

this means that, on the average, the minimum distance b&he difference between the two values temanifests itself
tween the crossing point and its corresponding eigenvalueis the difference of the sign of the imaginary part &f

decreases with increasirg. In the limit N—oo, all eigen-

—&,, since different Riemann sheets have been approached.

values will hit the crossing point. Thus the compensated sysAs a consequence, for large values\ahe right hand side of
tem behaves similarly to the picket fence. Also in this caseEq. (24) tends towards tan for the one case and towards

the space of the eigenstates collapsed atA .= 2/ into

— cotw=tan(w/2+ w) for the other.

dimension one, and a globally collective state is created. For We suggest that using electromagnetic resonators may al-

comparison, the undercompensated case wif0 andt

low control of both the global coupling and the relative

=4 is drawn in Fig. 3 as an example for a system which doegoupling between two resonances which is givenuof it

not undergo a phase transition. As explained abaye; o
in this case an® has no maximum at a finite value nf

D. Phase behavior of the wave functions

In Sec. Il some properties of the eigenfunctions have bee
pointed out, when a non-self-adjoint Hamiltonian is consid
ered. We resume the discussion in more detail here wit
particular emphasis on the phase of the wave functions whe
an EP is approached by the variation of the coupling para
eter A. Surrounding one crossing point in the complex en
ergy plane corresponds to a double loop around the EP in t
A plane, Eq(7), since the EPs are square root branch points
Eqg. (8). We address in the following the effect of looping
once around an EP in the plane. For demonstration we use
the simple two-dimensional model introduced in Sec. Il, Eq.

(6).
The two eigenfunctions, normalized according to B},
can be parametrized by the complex angle

cosd —sin @
V1= sing|> ¥2=| coso |- (22
where the angl® is given by
E1—E—(e1— ) +iA cos D
tarpg- -G (e €) 23

51_82+(€1_62)_iA COS v’

The notation has been introduced in E@. and (8). From
this expression we read off) at an EP £;=¢&,) we obtain
tarfg=—1 which implies |cosé|=|sing|==, that is, the

m-

should be possible to bring to interference the wave func-
tions for the two different situations, that is, fer=45° and
for <45°, the different phases are expected to be observ-
able.

The situation described is reminiscent of Berry's phase
PlZ]. However, we stress that in our discussion we are deal-

ing with non-self-adjoint operators, and an EP is therefore

ﬂot to be confused with Berry’s diabolic points. This differ-
nce was pointed out {r13]. In fact, a generic Ef.e., when
just two levels coalesggyives rise to a double pole in the
orresponding Green'’s function 8rmatrix. The mechanism
or this to occur is again related to the vanishing of the norm
of the eigenvectors wheN — Agp. The double pole is an
additional signature for an EP. It is different from the simple
pole emerging in the Green’s functio® (natrix), if a usual
single resonance or an incidental degeneracy of two reso-
nances occurs, say, owing to some symmetry. The latter situ-
ation is, however, an unlikely event as it needs the tuning of
four parameterssix parameters in the case of no time rever-
sa) to achieve it. In contrast, the existence of the EPs is an
intrinsic mathematical feature.

IV. SUMMARY AND OUTLOOK

In this paper we studied the relation between phase tran-
sitions, collective states, and the distribution of EPs of open
guantum systems. Since both the collectivity and the phase
transition are well pronounced in the one-channel case, we
restricted ourselves to aN-dimensional quantum system
coupled to one open decay channel. Our results are as fol-
lows.
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(i) A necessary condition for a phase transition to occur idutions of all basis functions of the unperturbed systém
that the EPs accumulate in the complexplane. This result It is a globally collective state which is created by the system
has been shown analytically for the picket-fence model anés a whole.
some generalizations, and is confirmed by numerical results (iv) If the system does not hit the accumulation point, the
using the quantityB. The quantityB is a measure for the formation of the collective state is not related to a genuine
average minimum distance of the eigenvalues to its crossinghase transition. This is, in particular, the case for a system
point in the complex energy plane. In the cases consid&ed, with a purely Hermitian coupling matri¥d,; and ¢=90°
has a pronounced maximum at the critical valyeat which ~ which creates a state with large internal collectivity.
the phase transition occurs. The increas8 afith the num- (v) If the accumulation point is ak .—, the formation
berN of states is a further indication that the EPs accumulatef the collective state occurs successively and locally. Its
in the complexA plane. wave function contains contributions only from those reso-

(i) The choice of the angle is dictated by the physical nance states which are overlapped by it.
situation. Only if it is equal to the phase df;, the system Exploiting the fact that the crossing points in the complex
hits the accumulation poiror goes through the region of energy plane are square root branch points, we suggest a
high density of EPs when\ is varied. Otherwise, the sys- possibility for an experimental study of the level repulsion of
tem may pass the vicinity of the accumulation pdiot the the complex eigenvalues. For this, the relative coupling
region of high density of EPsand a phase transition in the strength of the states to the continuum as well as the overall
strict thermodynamical sense does not occur. In all casegalue of their coupling strength should be controllable. A
considered, we find thag has to be 0° for hitting the accu- signature of local resonance crossing is given by a particular
mulation point A, and for a genuine phase transition to change of the phase of the complex eigenfunctions. Work
emerge. towards this aim is in progress.

(iii ) If the system hits the accumulation point, the infinite-
dimensional space collapses to a one-dimensional function
space, since the infinitely many eigenfunctions are identical
at A=A.. This is in contrast to the function space of a usual Valuable discussions with T. Gorin, C. Jung, S. Muraviev,
N-fold degeneracy, wherd independent eigenfunctions oc- and G. Soff are gratefully acknowledged. The present inves-

ACKNOWLEDGMENTS

cur. The eigenfunction of the collective state contains contritigations are supported by the DFG and SMWK.

[1] I. Rotter, Rep. Prog. Phy&4, 635(1991); V.V. Sokolov and
V.G. Zelevinsky, Ann. Phys(N.Y.) 216 323 (1992; M.
Desouter-Lecomte, J. bin, and V. Brems, J. Chem. Phys.
103 15 (1995; V.V. Flambaum, A.A. Gribakina, and G.F.
Gribakin, Phys. Rev. /4, 2066 (1996; Y.V. Fyodorov and
H.J. Sommers, J. Math. Phy38, 1918(1997).

[2] F.M. Dittes, I. Rotter, and T.H. Seligman, Phys. Lett.188
14 (199)).

[6] E. Persson, T. Gorin, and |. Rotter, Phys. Revb& 1334
(1998.

[71C. Jung, M. Mduer, and I.
gquant-ph/9804020http://xxx.lanl.govj.

[8] G. Brown and M. Bolsterli, Phys. Rev. Le®, 472(1959.

[9] W.D. Heiss and A.L. Sannino, J. Phys. 28, 1167 (1990;
Phys. Rev. A43, 4159(199).

[10] W.D. Heiss, Phys. Rep242, 443(1994.

Rotter, Report No.

[3] M. Muiller, F.-M. Dittes, W. Iskra, and |. Rotter, Phys. Rev. E [11] W.D. Heiss and A.A. KotzePhys. Rev. A44, 2403(1991);

52, 5961(1995.

[4] V.V. Sokolov, I. Rotter, D.V. Savin, and M. Mier, Phys.
Rev. C56, 1031(1997); 56, 1044(1977).

[5] T. Gorin, F.M. Dittes, M. Milier, I. Rotter, and T.H. Seligman,
Phys. Rev. B56, 2481(1997).

A.A. Kotze and W.D. Heiss, J. Phys. 27, 3059(1994.
[12] M.V. Berry, in Quantum Chagsedited by G. CasatiPlenum,
London, 198%; Proc. R. Soc. London, Ser. 239 45 (1983.
[13] E. Hernandez and A. Mondragon, Phys. Lett355, 1 (1994);
A. Mondragon and E. Hernandez, J. Phys2@ 5595(1993.



