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Collectivity, phase transitions, and exceptional points in open quantum systems
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Phase transitions in open quantum systems, which are associated with the formation of collective states of a
large width and of trapped states with rather small widths, are related to exceptional points of the Hamiltonian.
Exceptional points are the singularities of the spectrum and eigenfunctions, when they are considered as
functions of a coupling parameter. In the present paper this parameter is the coupling strength to the con-
tinuum. It is shown that the positions of the exceptional points~their accumulation point in the thermodynami-
cal limit! depend on the particular type and energy dependence of the coupling to the continuum in the same
way as the transition point of the corresponding phase transition.@S1063-651X~98!07509-6#

PACS number~s!: 64.60.2i, 05.70.Fh, 03.80.1r, 02.30.Dk
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I. INTRODUCTION

Recently, mechanisms of restructuring of quantum s
tems have been discussed with renewed interest@1–7#. Con-
ditions for the formation of collective states on the one ha
and of quantum chaos on the other are being studied. Am
the oldest examples of the former is the schematic mo
explaining in simple terms the origin of giant dipole res
nances in nuclei@8#. The Hamiltonian is of the formH
5H01H15H01DDT whereH0 is the Hamiltonian of the
unperturbed system andDDT describes the factorize
dipole-dipole residual interaction. The rank ofH0 is N where
N is the number of unperturbed states considered in a ce
energy interval, while the rank ofDDT is 1. If the modulus
of the average matrix elements of the vectorD is sufficiently
large (D̄@d0 , whereD̄ is the average matrix element ofD
andd0 is the mean level distance of the eigenvalues ofH0),
one of the eigenstates ofH is shifted considerably in energy
Since its eigenvector has contributions from almost all ba
states, it is a collective state. This type of collectivity
called internal collectivity @4#.

Besides the internal collectivity, there exists the so-cal
external collectivity of resonance states@4#. It appears at high
level density since the discrete states are in general em
ded in the continuum and coupled to each other via the c
tinuum. The Hamiltonian of the open quantum system is
a good approximation, given byH02 iVVT whereVVT con-
tains the coupling matrix elementsVj

c between the discrete
statesj and the decay channelsc. The rank ofVVT is equal
to the numberK of open decay channels. It is usually mu
smaller than the rankN of H0 . If the matrix elements ofVVT

are sufficiently large (V̄@d0), K collective states are
formed. They are distinguished from theN2K non-
collective states by their large widths or short lifetimes@1–
7#. The wave functions of theseK collective resonance state
are again characterized by a large number of componen
the basis states.

There is a basic difference between internal and exte
collectivity. Internal collectivity deals with a self-adjoin
Hamiltonian, where the coupling parameter is real, while
PRE 581063-651X/98/58~3!/2894~8!/$15.00
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ternal collectivity is described by a purely imaginary co
pling strength. The particular type of collectivity is therefo
expressed by a real spectrum in the first case, whereas in
second case the dissipative character of the open syste
reflected by imaginary parts of the eigenenergies, the ph
cal widths. Formally, the formation of a collective state
however, the same in both cases. It is expressed by the
ing of the eigenfunctions of the full Hamiltonian with respe
to the eigenfunctions ofH0 .

The case rank(H0)5rank(H1) is not necessarily con
nected with the appearance of collective states. It has b
widely discussed in the literature@9#. Conditions have been
given for the occurrence of chaotic behavior and of some
of phase transitions@10#. The mechanism of such restructu
ing and possible chaotic behavior in the transitional reg
(L;Lc) have been explained in terms of the exceptio
points ~EPs! of the problemH01LH1 .

The EPs are the only singularities in the complexL plane
of the eigenvaluesEk(L). Their positions are fixed by the
choice ofH0 andH1 only. As a consequence, the distributio
of the EPs is characteristic for any particular Hamiltonian
the formH01LH1 , onceH0 andH1 are given.

It is therefore natural to discuss the EPs as they determ
important properties of the spectrum such as the statis
properties, the type and locations of avoided level crossin
the softness of the spectrum, and the ranges ofL values,
where special features of the spectrum occur. In particu
the distribution and frequency of the EPs give indicatio
about transitional regions and possible occurrence of cha
behavior.

The studies of the EPs have, in the papers quoted, b
dealing with closed systems, where the influence of de
channels in the continuum has not been considered, that iH
is self-adjoint and the eigenstates are discrete. As st
above, we are often faced with dissipative systems, wh
the coupling to the continuum and decay channels is
pressed by complex eigenenergies which give rise to fi
lifetimes of resonance states. The complex eigenvaluesEk
5Ek2 i /2Gk are interpreted as resonance states at the e
giesEk with the decay widthsGk which are inverse lifetimes

While there is a great mathematical similarity in the tre
2894 © 1998 The American Physical Society
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ment of the respective self-adjoint and dissipative Hami
nians, the physical findings deserve particular attention.
special interest will be the circumstances under which
formation of collective states can be understood as a ph
transition. We generalize the results obtained in@10# to open
quantum mechanical systems and expand the investiga
of @7# by taking into account the effects and properties of
EPs. In all cases, we will restrict ourselves to the o
channel case in which the phase transition as well as
collectivity of one of the states are well pronounced.

Generally, a phase transition is a substantial restructu
of the system taking place at a finite~critical! valueLc of a
certain control parameterL. This restructuring is a collective
phenomenon, ranging over all scales inherent in the sys
The nature of the reorganization process is characterize
the behavior of an order parameter being a function ofL. In
our case of an open quantum system the order paramet
G0 /N whereG0 is the width of the collective mode~in the
one-channel case! andN is the total number of states@7#. Its
first derivative with respect toL shows a finite discontinuity
at the critical valueLc corresponding to a second-ord
phase transition. All characteristic features of the phase t
sition emerge already at finite values ofN despite the fact
that the strict thermodynamical definition is possible only
N→`. Precise conditions for its occurrence are derived
@7#.

The phase transition is connected with the appearance
state whose external collectivity is of a global nature.
wave function carries contributions fromall eigenstates of
H0 . This global collectivity must be distinguished from th
local ~external! collectivity which appears when the res
nance states are coupled strongly to the continuum but
conditions for a phase transition are not fulfilled. The wa
function of this collective state carries contributions on
from a restricted number of basis states, whose unpertu
energies are overlapped by the width of the collective s
@7#.

In Sec. II the basics of the EPs and specific features
lating to open quantum systems are reviewed. A simple
ample using two resonances coupled to one decay cha
illustrates the connection between the main results kno
from the study of open quantum mechanical systems@3# and
the aspect of the EPs. In Sec. III the restructuring of
system is put into context with several systems of a differ
nature. As a beginning, the simplest case of a picket-fe
model is considered. Characteristic patterns of the EPs r
ing to phase transitions are established. Next, the influenc
random perturbations within the system is investigated.
nally we discuss the effect of a more general level den
distribution of the unperturbed levels and that of the coupl
vectorV. A short summary and outlook is given in Sec. IV

II. EXCEPTIONAL POINTS AND FEATURES
OF OPEN QUANTUM SYSTEMS

The N3N matrix problem of the formH01LH1 has ei-
genvaluesEk(L), k51, . . . ,N which are obtained by the
secular equation

det~H01LH12E!50. ~1!

We here assume thatH0 andH1 are real and symmetric. Th
EPs@9# are characterized by the coalescence of any two p
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of eigenvalues. They are fixed by a particular choice ofH0
andH1 . If we exclude a genuine degeneracy of eigenvalu
for real valuesL, such coalescence will happen only fo
complex values of the coupling parameter and hence
complex eigenvalues. Accordingly, the EPs are determi
by the simultaneous solutions of Eq.~1! and of

d

dE
det~H01LH12E!50, ~2!

where the second equation ensures that two eigenvalue
incide. Equations~1! and~2! are polynomials inE andL of
orderN andN21, respectively. They can be combined in
a single polynomial inL of orderN(N21), the resultant of
Eq. ~1!, by eliminating the variableE. The resultant has rea
coefficients, hence the EPs occur inN(N21)/2 complex
conjugate pairs. They are the only singularities which
eigenvaluesEk(L) can have as functions ofL. In fact, they
are the square root branch points of one analytic funct
which hasN Riemann sheets, where the values on each s
are just the real eigenvaluesEk(L) for real valuesL. All N
eigenvalues are therefore analytically connected with e
other via the square root branch points in the complexL
plane.

The behavior of the eigenfunctions when continued to
EPs deserves special interest. Since they are lying in
complexL plane, the operatorH01LH1 is no longer self-
adjoint at L5LEP with LEP denoting a ~complex! EP.
Therefore we cannot expect two linearly independent eig
vectors even though two~complex! eigenvaluesEi and Ek
coalesce. The eigenbasis ofH01LEPH1 is no longer or-
thogonal as is the case for self-adjoint Hamiltonians. In f
in contrast to the self-adjoint case, where a twofold deg
eracy always implies a two-dimensional eigenspace, an E
characterized by the fact, that the rank of the associated
trix H01LEPH1 drops by one. In other words, there is n
two-dimensional subspace associated with the coalescen
two eigenvalues. We rather encounter a confluence of
two eigenvectorsc l(L) and ck(L) at L5LEP. Moreover,
for a general complex valueL not coinciding with an EP, we
may choose a biorthogonal system such that

^c̃ l~L!uck~L!&5d lk , ~3!

wherec̃ i(L) andc i(L) are the left and the right eigenvec
tors, respectively. We note that the transformationO diago-
nalizing a symmetric complex HamiltonianH is complex
orthogonal (OOT5OTO51) but not unitary. Therefore the
scalar product of the two left or right eigenvectors obe

^c̃k(L)uc̃k(L)&5^ck(L)uck(L)&>1 for anyk. A problem
occurs when the normalization condition given by Eq.~3! is
considered for L→LEP: with El(LEP)5Ek(LEP) it is
c l(LEP)5ck(LEP). This means, in view of Eq.~3!, that
ck(LEP) cannot be normalized atL5LEP, since now the
orthogonality conflicts with the normalization requiremen
Usually, Eq.~3! is globally enforced; as a consequence, t
two statesc l(L) andck(L) not only coincide forL→LEP
but they blow up, that is limL→LEP̂

ck(L)uck(L)&→` @3#.
The physical significance of the EPs lies in their relati

to avoided level crossing. In particular, in a number of e
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amples it has been demonstrated that in the region of the
values ofL, where a high density of EPs occurs, the typic
statistical characteristics of the spectrum ascribed to quan
chaos prevail@9,11#.

Turning to open quantum systems

H5H02 iLVV† ~4!

we are faced with a Hamiltonian which has in general co
plex eigenvalues Ek5Ek2 i /2Gk as the dimensionles
strength parameterL is complex,

L5leiw. ~5!

@The factori in front of the coupling termL in Eq. ~4! is
used traditionally in this context.# The question then arises
whether and under which conditions two~or more! eigenval-
ues coincide in the complex energy plane and how suc
crossing depends on the coupling strengthL. The answer to
these questions depends on the manner by which the EP
fixed by the operatorsH0 andV.

For illustration let us consider the simple example of tw
resonances, which are coupled to one open decay cha
The Hamiltonian matrix for this system can be written in t
eigenbasis ofH0 as

H5S e1 0

0 e2
D 2 iLS cos2v cosv sin v

cosv sin v sin2v
D

[H02 iL VV†, ~6!

where we useH15VV†. The relative coupling strength o
the two resonance states to the continuum is determine
the anglev of the vectorV5(cosv,sinv). The simplicity of
the model provides an analytic expression for the two E
viz.,

LEP5 i ~e22e1!e62iv, ~7!

which are the zeros of the square root in the expression
the eigenenergies, which read

E1,25
e11e22 iL

2

6
1

2
A~e12e2!222iL~e12e2! cos 2v1~ iL!2.

~8!

The example nicely demonstrates that the EPs dependonly
on H0 andH1 . Under variation of the anglev the EPs are
moving on a circle with radiuse22e1 in the complexL
plane. What determines the EPs are the energies of the
perturbed states~that is,H0) and their relative coupling~that
is, H1), andnot the phasew of the couplingL5leiw.

Yet, the complex eigenvaluesE1,2 obviouslydo depend on
L, that is, on its modulusl and on the anglew. Variation of
l invokes trajectories in the complex energy plane. The c
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tours of the trajectories depend therefore on both the phaw
and the relative coupling controlled byv. For v545° and
w5wEP50° the two trajectories will cross one EP atl
5lEP5e22e1 . At this critical value of the coupling
strength the two eigenvalues coalesce. The dimension o
eigenspace of the Hamiltonian is reduced to one includ
the consequences for the eigenvectors mentioned above
stress, however, that the crossing of trajectories should
be confused with the familiar degeneracy for self-adjo
Hamiltonians.

For wÞwEP the two trajectories repel each other within
certain finite distance in the complex plane@3#. This is a
generalization of avoided level crossing for real eigenval
of a Hermitian Hamilton operator. Only ifw is properly
tuned to the value ofv can the two energy trajectories gen
inely cross each other. A nice illustration of this simple e
ample for different values ofv andw can be found in@6#.

What becomes obvious in the 232 matrix model can be
generalized to an arbitraryN3N situation, i.e.,N resonance
states coupled to one common decay channel. With incr
ing l one eigenvalue trajectory always drifts further into t
complex plane, while the others are bending back towa
the real axis after they have repelled with the collective st
whose width always increases. This happens irrespectiv
w. Physically it means that one of the resonance states t
almost all of the transition strength by trapping the oth
which then become long-lived@3,6#.

This is understood by the rank one of the coupling matr
At large values ofl the first partH0 of the Hamiltonian is a
small perturbation. Therefore the total matrix is essentia
turned into an operator of rank 1. In other words, there
only one nonzero eigenvalue, and the widths of the z
eigenvalues have to vanish. In general, withN resonance
states andK,N open decay channels, there appearK fast
decaying states andN2K states which are virtually stable
Various examples of the many-channel–many-resona
case can be found in@1–7#.

The low rank ofH1 has a drastic effect on the total num
ber of EPs. IfK is the rank ofH1 , the number of EPs is
K(2N2K21). The important point is the linear behavior
N; only whenK attains the order of magnitude ofN is the
quadratic behavior retrieved. This finding is significant
that it indicates that chaotic behavior cannot begeneratedby
a low rank ofH1 , there is simply an insufficient number o
avoided level crossings. This is in line with an analysis of t
level statistics of a Poisson ensemble coupled to a continu
by a Gaussian coupling vector@2,5#, where, for large cou-
pling strength, chaotic features of the system are the m
pronounced the larger the numberK of decay channels.

III. RESULTS

We turn our attention to the critical region, where a r
structuring of the system occurs. We address the relation
between the potential occurrence of a phase transition w
is associated with the formation of a globally collective sta
and the distribution of the EPs. Since the essential prope
of the Hamiltonian must be reflected in the distribution of t
EPs, we expect this relationship to exist.



e
ch

th

t
h
th

nt
-

ol

th

ar
ga
e

or

ted

ym-

to
c

w

tra-

tive
wn.
ies

r to

al-

he
the
ize

rds

g

ies

PRE 58 2897COLLECTIVITY, PHASE TRANSITIONS, AND . . .
A. Simple example: Picket-fence model

We consider the simple model with

H05S 2
N21

2
0 ••• 0

0 2
N23

2
••• 0

A � A

0 ••• 0
N21

2

D ~9!

and theN3N matrix of rank one

VV†5S 1 ••• 1

A A

1 ••• 1
D . ~10!

The Hamiltonian describes a picket-fence spectrum, wh
all states are coupled equally to one decay channel. Su
system shows a phase transition atL51/p @7#. Results for
finite N can be obtained easily by numerical means. In
limit N→` the zeros of det(H02 iLVV†2E) and sin(pE)
2 iL cos (pE) coincide@7#. One finds an accumulation poin
of the EPs, which emerges in the limit and is found from t
zeros of the resultant, which is obtained by eliminating
variableE from the set

sin ~pE!1 ipL cos~pE!50, ~11!

cos~pE!2 ipL sin ~pE!50. ~12!

These two equations are equivalent to Eqs.~1! and~2!. Their
simultaneous solutions, the zeros of the resultant~denoted by
Rsl!, are given by

Rsl~l!5A11~ ipL!2. ~13!

Obviously, this is no longer a polynomial. The importa
point of our finding is thatall roots which occur in the com
plex L plane for finiteN converge toL5l561/p in the
limit N→`. Negative values ofl would lead to negative
decay widths which have no physical meaning. In the f
lowing, we restrict ourselves to positivel and 0°<w
<90°, since all relations are symmetric with respect to
replacementL→2L andL→L* . Note also that the limit
point, being a point of accumulation, is no longer a squ
root branch point for the energy spectrum but rather a lo
rithmic branch point. In fact, the analytic behavior of th
~infinitely many! energy levelsEk(L) in the vicinity of L
51/p is found by solving the secular equation explicitly f
E. The expression reads

E~L!5
1

p
arctan~2 iLp!5

i

2p
ln

12Lp

11Lp
, ~14!

which clearly reveals the logarithmic branch points atL
51/p. Moreover, forlp,1 we read off

Ek5k2 iL1O~L2! ~15!
re
a

e

e
e

-

e

e
-

while for lp.1

Ek5k1
1

2
1

i

2p
lnU12Lp

11LpU5k1
1

2
2

i

p2L
1O~L22!,

~16!

with k integer. In both cases, the remaining terms, deno
by O, are purely imaginary ifw50°. These results were
obtained in@7#.

For finite N the resultant relating to the HamiltonianH0
2 iLVV† becomes a polynomial of orderN21 in L2. The
complex roots which are the EPs are therefore not only s
metric with respect to the real axis but a solutionLEP implies
also the solution2LEP. As a consequence, a solution has
occur on the realL axis for N even. This is a nongeneri
feature of the present model. For odd values ofN and w
50°, no eigenvalue is crossing an EP under variation ofl.
We use such cases in our numerical demonstrations.

To illustrate how theE undergo level repulsions and ho
the repulsions are related to the crossing pointsE(LEP), we
display in Fig. 1 the crossing points and the eigenvalue
jectories for different values ofN and w50°. Since the
spectrum is symmetric with respect to positive and nega
energies, only the positive part near to the center is dra
For L50 all trajectories begin at the unperturbed energ
ek , move into the complex plane and then turn back (ek
Þ0) towards the real axis again. For largeN the correspond-
ing values are given by Eq.~16! ~which is valid for N
→`). With increasingN the imaginary parts of the turning
and the crossing points increase, while they move neare
each other. The trajectory of the collective state (ek50) is
moving on the imaginary axis towards larger imaginary v
ues implying an increasing widthG. We interpret the turning
points as level repulsions of the collective state with t
other levels. The descending slope of the envelope of
turning points and the crossing points is due to the finite s
of the spectrum.

In Fig. 2 we display the EPs in theL plane for a few
values ofN. The sets of the EPs belonging to the sameN are
connected by a solid line. The zooming in of the EPs towa

FIG. 1. The trajectories of the eigenvalues forN515 andN
543 for increasinglP@0.001,2# in steps of 0.001. The crossin
points are marked by diamonds (N515) and crossesN543). E
andG are given in units of the distance of the unperturbed energ
ek of the picket fence.
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the accumulation pointlc51/p for increasingN is clearly
discernible and enhanced in the inset of Fig. 2. The largeN
the larger is the density of the EPs near to the real a
Additional points come in further away with each addition
step ofN. They are typical edge effects and correspond
the turning points of the energy trajectories at the outer ed
of the spectrum. These points which emerge further aw
from the real axis quickly move in to get near to the oth
while new further points come up for the following steps
N. Eventually, in the limitN→`, all points coalesce at th
accumulation point.

In this way, variation of the coupling strengthL invokes
a certain trajectory of the system in the complexL plane. If
it hits the accumulation pointLc ~or the high-density regions
of EPs at finiteN), all complex eigenvalues coalesce~nearly
coalesce! at their crossing point. This leads to a sharp tra
sition from a regime withN resonance states to a regim
with one collective state andN21 trapped states.

We note that at the accumulation pointL5Lc , which
can occur only in the limitN→`, all infinitely many eigen-
states collapse into one. It is the global collective state
retains its characteristics also forl.lc , when the other
states~the trapped states! re-emerge. This particular case u
derlines the crucial connection between the critical point o
phase transition and the EPs.

In the picket-fence model the accumulation pointLc lies
on the real axis. If for physical reasons, a valuewÞ0 has to
be chosen withH0 andH1 left unchanged, a variation ofl
will effect a trajectory in the complexL plane that passes th
high-density region~or accumulation point for infiniteN) at
a certain distance. This affects the sharpness of the trans
between the two regimes. Note that this type of softening
the phase transition is different in nature from the one cau
by a finite value ofN. It persists in the limitN→`. This
underlines thatw as well as the distribution of the EPs d
termine whether there is a phase transition in the strict th
modynamical sense, which is associated with the sudden
mation of a globally collective state in the system.

As an aside we realize that the schematic modelw
590°) cannot have any signatures of a sharp phase tra
tion, when the real value ofl is varied from zero to large

FIG. 2. The exceptional points in the complexL plane forN
515 ~rhombs!, N519 ~plus signs!, N527 ~crosses!, and N543
~triangles!. The inset is a magnification around the accumulat
point Lc ~black square!. The arrows indicate the changes of the E
with increasingN.
s.
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values. The accumulation point is then relatively far away
the imaginary axis of the coupling strength. Results fo
variety of anglesw but the sameH0 and H1 have been in-
vestigated in@7#.

Previously, a criterion for a phase transition, viz.,

B5
1

2N11 (
k52N

N

^ckuck&, ~17!

has been introduced in@7#. Excluding the nongeneric case o
an accidental crossing of two~or more! eigenvalues at an EP
B is an indicator of the sharpness of the transition. On
one hand, it is the larger the smaller the distance between
complex eigenvalues and their crossing points. This dista
is determined by the anglew. On the other hand,B@1 only
if all complex eigenvalues reach their minimum distance
multaneously at the same valueL5Lc , i.e., if the EPs ac-
cumulate. In this case,B shows a pronounced maximum as
function of L aroundL5Lc .

In Fig. 3 a few cases including the picket-fence model
illustrated. It also demonstrates a situation where a local
lective state is formed, which means that the phase trans
is washed out completely. We return to this latter aspec
the end of Sec. III C.

To summarize the findings of this subsection: the h
density of EPs provides the mathematical mechanism for
restructuring of the system under variation of the modulul
of the coupling parameterL towards larger values. The
sharpness of the transition which is evoked by the variat
is determined by the distance at which the high-density
gion ~accumulation point for infiniteN) of EPs is passed by
the corresponding energy trajectories. This distance is de
mined by the anglew.

B. Random change of the unperturbed spectrum

The essential aspects of our findings remain unchange
the unperturbed energies inH0 and/or the elements of th
coupling matrixV deviate from the symmetrical form used

FIG. 3. B as a function ofl for different systems withw50:
ideal picket fence withN5101 ~dotted line!, randomly perturbed
picket fence withN5101, 1001~solid lines!, compensated cas
with r 51, t54, andN5101, 1001~dashed lines!, undercompen-
sated case withr 50, t54, andN5101 ~thick line!. The two val-
ueslc51/p and 2/p, referring toN→`, are indicated by a verti-
cal solid line.
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the preceding section. We address the question of whe
and to what extent such disturbance can change the b
pattern, that is, the formation of a region of high density
EPs or even of an accumulation point in the largeN limit.

For this purpose, we define random perturbations inH0
by (H0)k,k52(N2122k)/21r k where ther k are random
numbers from a uniform distribution in the interv
@20.1,0.1#. In Fig. 4 we have drawn the EPs for the pe
turbed and unperturbed picket fence in the complexL plane
for N519. As in Fig. 2, the unperturbed EPs are connec
by a solid line. The perturbed EPs no longer lie on t
smooth curve but are scattered around it.

The quantityB of Eq. ~17! indicates the accumulativ
behavior of the EPs. It is illustrated in Fig. 3 for the di
turbed picket-fence model as a function ofl for two differ-
ent values ofN usingw50°. The excess beyond unity ofB
around l51/p increases with increasingN. We interpret
this result as a strong indication for the disturbances to
washed out, the more so the largerN. In other words, for an
increasing number of states, the average distribution of
EPs is zooming in toLc5lc51/p. Hence, the EPs of the
irregular system accumulate on the average.

Furthermore, the precise form of the distribution fro
which the random changes inH0 and/or H1 are drawn is
immaterial. In particular, choosing the eigenvalues ofH0
from a Wigner@Gaussian orthogonal ensemble~GOE!# or a
Poissonian distribution does not alter our conclusions. T
existence and the position of the accumulation point rem
unaffected.

C. Level density dependence

In real physical systems, the level density, the numb
and the coupling strength of the decay channels are in g
eral energy dependent. The former is usually a monoto
cally increasing function, whereas, for instance, in nucl
physics the continuum coupling strength decreases. This
ergy dependence will influence the distribution of the EP

In @7# it has been shown that it needs a proper tun
between the density dependence on the one hand and
coupling dependence on the other in order to guarante
phase transition at a finite value of the coupling streng
Given the energy dependence of the level densityr(E), a

FIG. 4. The EPs forN519 for the ideal picket fence~rhombs!
and the randomly perturbed picket fence~plus signs!. Lc is denoted
by a black square.
er
sic
f

d
e

e

e

e
in

r,
n-
i-
r
n-

g
the
a
.

phase transition occurs at finite coupling strength, if and o
if the energy dependence of the coupling vector is given
the inverse functionr(E)21. If the system obeys this condi
tion on the average, a phase transition still occurs. The c
cal point may be shifted with respect to the value of the id
picket-fence model. We talk about ‘‘overcompensation
when the energy dependence of the coupling vector
creases~increases! at a lesser~faster! rate than that of the
inverse behavior of the level density. In this case, numer
results @7# led to the conjecture that the critical point
shifted to zero, i.e.,lc→0 if N→`. In the opposite case
which we denote as ‘‘undercompensation,’’ a global colle
tive mode and a global reorganization of the spectrum a
whole is absent. Now one obtainslc→` if N→`. The oc-
currence of the broad mode remains then a local phen
enon for all finite values ofl @7#. A collapse of the Hilbert
space as in the picket-fence model does not occur.

The following substantiates the conjecture about the p
tion of lc in the undercompensated and overcompensa
cases. To facilitate the discussion we restrict ourselves
power behavior of the energy dependence of the coup
and level density. The energy dependence of the coup
matrix elementsuvku2 is assumed to be of the formukur . The
unperturbed energies~eigenvalues ofH0) are defined asek
5sgn(k)uku t/2. The secular equation Eq.~1! can be written as

(
k52N/2

N/2 uvku2

E2ek
5

i

L
. ~18!

Using Eq.~18!, we obtain

(
k52N/2

N/2 uvku2

~E2ek!
2

50, ~19!

which corresponds to Eq.~2!.
The EPs are simultaneous solutions of Eqs.~18! and~19!.

It is obvious from Eq.~19! that the energy values at the E
cannot be real. In fact, it is known@7#, and also discussed in
connection with Fig. 1, that, fort52 and r 50 ~picket
fence!, the imaginary parts of the energies at the EP tend
infinity for N→`. Numerical evidence as well as the follow
ing consideration support the conjecture that this holds
arbitrary values ofr and t as long ast2r .1. For this pur-
pose we rewrite Eq.~18! for evenN,

2E(
k51

N/2
kr

E 22kt 5
i

L
. ~20!

In the largeN limit we replace the sum in Eq.~20! by an
integral andE by iz and obtain

22izE
1

` krdk

z21kt
5

22iz

t2r 21
F21S 1,12

11r

t
,22

11r

t
;2z2D

5
i

L
. ~21!

The derivative with respect toz of the right hand side of Eq
~21!, which is a linear combination of two hypergeometr
functions, corresponds to the largeN limit of Eq. ~19! (E
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→ iz). It is straightforward to show, for instance, by graph
cal means, that this derivative has no zero for finite value
z. In fact, the derivative vanishes only forz→` irrespective
of r andt (t.r 11). We exploit this fact in Eq.~18! in that
we consider the limit of the left hand side for large imagina
values of E5E2 iG/2. It is found to be proportional to
G2(11r )/t/G. This yields the generalized result that the ov
compensated case occurs for 2(11r ).t, and the compen-
sated and undercompensated cases for 2(11r )5t and 2(1
1r ),t, respectively@7#. In fact, the respective limit of the
left hand side of Eq.~21! is infinity, a finite constant, and
zero forG→`. Consequently, the corresponding values ol
must be zero, finite, and infinity, respectively. Since the
values constitute simultaneous solutions of Eqs.~18! and
~19!, they are the values where the EPs accumulate. Furt
more it follows that the accumulation point is on the real a
for the compensated case@ t52(11r )#.

To demonstrate further this result, the values ofB as a
function of L5l (w50) are drawn for the compensate
caser 51, t54 in Fig. 3. One clearly sees that the maximu
of B aroundl52/p increases withN. As explained above
this means that, on the average, the minimum distance
tween the crossing point and its corresponding eigenva
decreases with increasingN. In the limit N→`, all eigen-
values will hit the crossing point. Thus the compensated s
tem behaves similarly to the picket fence. Also in this ca
the space of the eigenstates collapses atL5Lc52/p into
dimension one, and a globally collective state is created.
comparison, the undercompensated case withr 50 and t
54 is drawn in Fig. 3 as an example for a system which d
not undergo a phase transition. As explained above,lc→`
in this case andB has no maximum at a finite value ofl.

D. Phase behavior of the wave functions

In Sec. II some properties of the eigenfunctions have b
pointed out, when a non-self-adjoint Hamiltonian is cons
ered. We resume the discussion in more detail here w
particular emphasis on the phase of the wave functions w
an EP is approached by the variation of the coupling par
eter L. Surrounding one crossing point in the complex e
ergy plane corresponds to a double loop around the EP in
L plane, Eq.~7!, since the EPs are square root branch poi
Eq. ~8!. We address in the following the effect of loopin
once around an EP in theL plane. For demonstration we us
the simple two-dimensional model introduced in Sec. II, E
~6!.

The two eigenfunctions, normalized according to Eq.~3!,
can be parametrized by the complex angleu:

c15S cosu

sin u D , c25S 2sin u

cosu D , ~22!

where the angleu is given by

tan2u5
E12E22~e12e2!1 iL cos 2v

E12E21~e12e2!2 iL cos 2v
. ~23!

The notation has been introduced in Eqs.~6! and ~8!. From
this expression we read off~i! at an EP (E15E2) we obtain
tan2u521 which implies ucosuu5usinuu5`, that is, the
of

-

e

r-
s

e-
es

s-
,

or

s

n
-
th
en

-
-
he
s,

.

components of the wave functions blow up;~ii ! when an EP
is surrounded in theL plane ~which amounts toE12E2
→E22E1), the tan2u is changed into 1/tan2u, which corre-
sponds to the changeu→u1p/2. This impliesc1→c2 and
c2→2c1 .

While it may not be obvious to implement such a conto
in the complexL plane in an actual physical experimen
there could be a possibility to achieve the same effect b
variation of the modulus ofL for different values of the
relative coupling given byv. In fact, using the settingH0
2 ilVV†, then the EP lies forv*45° just below and for
v&45° just above the pointl5e22e1 . If we compare the
two situations while varyingl, the two wave functions for
l.e22e1 differ in the same way as if the EP had be
surrounded.

This can be made explicit by choosing an expression
tanu which is more convenient for this purpose, viz.,

tanu5
2 ilsin2v

E12E21e12e22 il cos 2v
. ~24!

The difference between the two values forv manifests itself
in the difference of the sign of the imaginary part ofE1
2E2 , since different Riemann sheets have been approac
As a consequence, for large values ofl the right hand side of
Eq. ~24! tends towards tanv for the one case and towards
2cotv5tan(p/21v) for the other.

We suggest that using electromagnetic resonators ma
low control of both the global couplingl and the relative
coupling between two resonances which is given byv. If it
should be possible to bring to interference the wave fu
tions for the two different situations, that is, forv*45° and
for v&45°, the different phases are expected to be obs
able.

The situation described is reminiscent of Berry’s pha
@12#. However, we stress that in our discussion we are d
ing with non-self-adjoint operators, and an EP is theref
not to be confused with Berry’s diabolic points. This diffe
ence was pointed out in@13#. In fact, a generic EP~i.e., when
just two levels coalesce! gives rise to a double pole in th
corresponding Green’s function orS matrix. The mechanism
for this to occur is again related to the vanishing of the no
of the eigenvectors whenL→LEP. The double pole is an
additional signature for an EP. It is different from the simp
pole emerging in the Green’s function (S matrix!, if a usual
single resonance or an incidental degeneracy of two re
nances occurs, say, owing to some symmetry. The latter s
ation is, however, an unlikely event as it needs the tuning
four parameters~six parameters in the case of no time reve
sal! to achieve it. In contrast, the existence of the EPs is
intrinsic mathematical feature.

IV. SUMMARY AND OUTLOOK

In this paper we studied the relation between phase t
sitions, collective states, and the distribution of EPs of op
quantum systems. Since both the collectivity and the ph
transition are well pronounced in the one-channel case,
restricted ourselves to anN-dimensional quantum system
coupled to one open decay channel. Our results are as
lows.
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~i! A necessary condition for a phase transition to occu
that the EPs accumulate in the complexL plane. This result
has been shown analytically for the picket-fence model
some generalizations, and is confirmed by numerical res
using the quantityB. The quantityB is a measure for the
average minimum distance of the eigenvalues to its cros
point in the complex energy plane. In the cases considereB
has a pronounced maximum at the critical valueLc at which
the phase transition occurs. The increase ofB with the num-
berN of states is a further indication that the EPs accumu
in the complexL plane.

~ii ! The choice of the anglew is dictated by the physica
situation. Only if it is equal to the phase ofLc , the system
hits the accumulation point~or goes through the region o
high density of EPs!, whenl is varied. Otherwise, the sys
tem may pass the vicinity of the accumulation point~or the
region of high density of EPs! and a phase transition in th
strict thermodynamical sense does not occur. In all ca
considered, we find thatw has to be 0° for hitting the accu
mulation point Lc and for a genuine phase transition
emerge.

~iii ! If the system hits the accumulation point, the infinit
dimensional space collapses to a one-dimensional func
space, since the infinitely many eigenfunctions are ident
at L5Lc . This is in contrast to the function space of a usu
N-fold degeneracy, whereN independent eigenfunctions oc
cur. The eigenfunction of the collective state contains con
.
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butions of all basis functions of the unperturbed systemH0 .
It is a globally collective state which is created by the syst
as a whole.

~iv! If the system does not hit the accumulation point, t
formation of the collective state is not related to a genu
phase transition. This is, in particular, the case for a sys
with a purely Hermitian coupling matrixH1 and w590°
which creates a state with large internal collectivity.

~v! If the accumulation point is atLc→`, the formation
of the collective state occurs successively and locally.
wave function contains contributions only from those res
nance states which are overlapped by it.

Exploiting the fact that the crossing points in the compl
energy plane are square root branch points, we sugge
possibility for an experimental study of the level repulsion
the complex eigenvalues. For this, the relative coupl
strength of the states to the continuum as well as the ove
value of their coupling strength should be controllable.
signature of local resonance crossing is given by a partic
change of the phase of the complex eigenfunctions. W
towards this aim is in progress.

ACKNOWLEDGMENTS

Valuable discussions with T. Gorin, C. Jung, S. Muravie
and G. Soff are gratefully acknowledged. The present inv
tigations are supported by the DFG and SMWK.
@1# I. Rotter, Rep. Prog. Phys.54, 635 ~1991!; V.V. Sokolov and
V.G. Zelevinsky, Ann. Phys.~N.Y.! 216, 323 ~1992!; M.
Desouter-Lecomte, J. Lie´vin, and V. Brems, J. Chem. Phys
103, 15 ~1995!; V.V. Flambaum, A.A. Gribakina, and G.F
Gribakin, Phys. Rev. A54, 2066 ~1996!; Y.V. Fyodorov and
H.J. Sommers, J. Math. Phys.38, 1918~1997!.

@2# F.M. Dittes, I. Rotter, and T.H. Seligman, Phys. Lett. A158,
14 ~1991!.

@3# M. Müller, F.-M. Dittes, W. Iskra, and I. Rotter, Phys. Rev.
52, 5961~1995!.

@4# V.V. Sokolov, I. Rotter, D.V. Savin, and M. Mu¨ller, Phys.
Rev. C56, 1031~1997!; 56, 1044~1977!.

@5# T. Gorin, F.M. Dittes, M. Müller, I. Rotter, and T.H. Seligman
Phys. Rev. E56, 2481~1997!.
@6# E. Persson, T. Gorin, and I. Rotter, Phys. Rev. E58, 1334
~1998!.

@7# C. Jung, M. Müller, and I. Rotter, Report No.
quant-ph/9804020~http://xxx.lanl.gov/!.

@8# G. Brown and M. Bolsterli, Phys. Rev. Lett.3, 472 ~1959!.
@9# W.D. Heiss and A.L. Sannino, J. Phys. A23, 1167 ~1990!;

Phys. Rev. A43, 4159~1991!.
@10# W.D. Heiss, Phys. Rep.242, 443 ~1994!.
@11# W.D. Heiss and A.A. Kotze´, Phys. Rev. A44, 2403 ~1991!;
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